Новости

Бесконтактное измерение длины и скорости при производстве стальных труб

Производителям стальных труб необходимо точное измерение длины продукции. Точное измерение длины во время резки, для производства продукции по спецификации заказчика. Точное измерение длины также позволяет производителям решать другие важные задачи, такие как: Непрерывное измерение длины; Измерение скорости; Измерение дискретной продукции; Позиционирование продукта для нанесения маркировки/покраски. Тем не менее, многие производители до сих пор используют для подобных измерений механические контактные тахометры /энкодеры, получая в лучшем случае 1% или еще большую погрешность из-за проскальзывания и механических проблем. Погрешность измерений непосредственно влияет на качество продукции и количество отходов, которые могут стоить значительных затрат производителю. Бесконтактный датчик Beta LaserMike LaserSpeed измеряет длину и скорость трубной продукции с точностью ± 0,05% и погрешностью ± 0,02%. Это отличная замена для механических контактных тахометров/энкодеров, которые подвержены целому ряду ошибок измерений и высоким затратам на обслуживание. Датчик Beta LaserMike LaserSpeed использует передовые лазерные технологии для выполнения этих измерений. Он проецирует уникальный узор на поверхности продукции. Во время ее движения лазерный луч возвращается обратно к датчику. Эта информация преобразуется в скорость продукции и импульсы, производимые для определения длины продукции. Датчик LaserSpeed не имеет движущихся частей и поставляется с заводской калибровкой, что обеспечивает низкую стоимость содержания и обслуживания. Датчик Beta LaserMike LaserSpeed имеет несколько вариантов исполнения для работы в различных условиях окружающей среды: LS8000 - измерение длины и скорости при расстоянии до объекта контроля от 300 до 2500 мм, и скорости до 20000 м/мин; LS9000 – измерение нулевой скорости (остановки) и определение реверсивного движения; • LS8000E / 9000E – датчик, заключенный в защитный корпус из алюминия, для работы в горячих и агрессивных средах; LS8000X / 9000Х – датчик, заключенный в защитный корпус из нержавеющей стали для применения в тяжелых, экстремальных условиях, при наличии большого количества пыли, пара, брызг.


Современные тепловизоры

Современные тепловизоры имеют два типа матричных приемников излучения – охлаждаемые и неохлаждаемые. Они подразделяются на наблюдательные и измерительные системы. Как правило, охлаждаемые детекторы используются в стационарных и переносных наблюдательных приборах дальнего действия, а также в стационарных измерительных камерах, которые предназначены для научных исследований и медицинской диагностики. Неохлаждаемые матрицы встраиваются в портативные наблюдательные и измерительные приборы общего назначения для измерения температуры в промышленности, энергетике и строительстве. Качество картинки и точность измерения удаленных объектов малых размеров зависит от размерности матрицы. На рисунке ниже изображены термограммы нагретого контакта на проводе, сделанные приборами с разным пространственным разрешением. Из данного примера видно, что точность измерения температуры сильно зависит от размерности матрицы. Если для матрицы 320 на 240 элементов это изменение чуть более 10% по сравнению с матрицей 640 на 480 элементов, то для матрицы 160 на 120 элементов температура уменьшается почти в два раза. При этом сам дефект находится на грани различимости. Применение матриц с более низким разрешением, чем 160 на 120 элементов не только не позволяет правильно измерить температуру удаленных объектов, но даже и обнаружить их. Дополнительная приближающая оптика позволяет приборам с матрицами 160 на 120 и 320 на 240 элементов получать пространственное разрешение, аналогичное камерам с матрицами 640 на 480 элементов, при этом уменьшается поле зрения кратно величине увеличения оптики. Выбор тепловизора зависит от финансовых возможностей и задач, которые требуется решать. Самые дорогие системы - с более высоким разрешением. Комплекты с меньшим разрешением и дополнительной оптикой несколько дешевле, но они менее удобны. В любом случае консультация специалиста и грамотный совет не помешает людям, собирающимся заняться инфракрасной диагностикой. Компактные измерительные тепловизоры NEC AVIO F30 и EasIR. NEC AVIO F30 - это одни из самых миниатюрных приборов с неохлаждаемыми болометрическими матрицами 160 на 120 элементов. Чувствительность 0,1°С, вес 0,35 кг. Диапазон измерения температуры у F30 от -20°С до 350°С. Встроенные видеокамеры тепловизоров обеих серий имеют функции совмещения видео картины и тепловизионного анализа. Тепловизоры NEC Avio G120 серии G100 и R300 с болометрической матрицей 320 на 240 элементов. Тепловизоры с матрицами 640 на 480 элементов: NEC AVIO H2640, R500 и ThermoPro.


Развитие тепловизионной техники

Многие типы приемников были известны еще в XIX, но изготовить полноценную тепловизионную систему не могли долгое время. Возьмем, к примеру, болометр. Принцип работы данного приемника излучения основан на возможности менять свое электрическое сопротивление в зависимости от теплового потока, падающего на приемник. Допустим надо получить картину 100 на 100 точек с частотой 10 кадров в секунду. Для этого необходимо, чтобы одноэлементный приемник реагировал на сигналы с частотой 100000 Гц. Инерционность болометров на три порядка хуже. Для получения тепловизионной картины требовались приемники с гораздо более высоким быстродействием. Это стало возможным с появлением фотоприемников, быстродействие которых доходит до нескольких миллионов реакций в секунду. Однако для работы фотоприемников требуется глубокое охлаждение до температуры около минус двухсот градусов Цельсия. Кроме этого необходимо принимать во внимание, что атмосфера прозрачна только в определенных спектральных диапазонах, а также то, что с ростом температуры максимум излучения смещается в область более коротких длин волн. Наиболее широко используемые окна прозрачности атмосферы – это 3-5 мкм и 7-14 мкм. В области 3-5 мкм имеют максимум излучения объекты с температурой от 300 до 700 градусов Цельсия, а в области 7-14 мкм имеют максимум излучения объекты с температурой от -60 до 140 градусов Цельсия. Исходя из задач термографии, очевидно, что больший интерес представляет спектральный диапазон 7-14 мкм. Вся история развития тепловизионной техники показывает, как производители инфракрасной техники стремились улучшить чувствительность, уменьшить размеры и вес, повысить надежность и быстродействие, а также изготовить прибор, работающий без дополнительного охлаждения и в определенном спектральном диапазоне. Самым чувствительный материал одноэлементных тепловизоров - антимонид индия InSb, но он работает в спектральном диапазоне 3-5 мкм. В диапазоне 7-14 мкм самым известным материалом фотоприемников является кадмий-ртуть-теллур HgCdTe. Первым способом охлаждения приемников – был способ охлаждения с помощью жидкого азота, температура которого составляет минус 196 градусов Цельсия. Кроме этого для тепловизоров с одноэлементными приемниками излучения требовалась механическая система развертки, которая формировала изображение объектов. Тепловизор AVIO TVS-2000 Все это обуславливало то, что первые гражданские тепловизоры, выпущенные в 60-х годах ХХ века, весили около 35 кг, им требовалось сетевое питание, тележка для перемещения, а также жидкий азот для охлаждения. Развитие электроники в 70-х – начале 80-х годов ХХ века привело к тому, что стало возможно питание тепловизоров от аккумуляторов и снижение веса до 12 кг. При этом появилась возможность фиксации тепловой картинки на видеомагнитофон с последующей обработкой записанной информации на специализированном компьютере. Пространственное разрешение таких тепловизоров было около 150 на 150 элементов, а частота кадров не превосходила 10 Гц. Тепловизор NEC TH5104 Дальнейшее развитие новых технологий позволило в конце 80-х – начале 90-х годов ХХ века за счет применения протяженных приемников снизить глубину охлаждения. Такие приемники работали при температуре около минус 80 градусов Цельсия. Это был настоящий прорыв в производстве тепловизионной техники. Охлаждение осуществлялось с помощью термоэлектрического холодильника и не требовало жидкого азота. Приборы стали компактнее и их вес снизился до нескольких кг. Применение цифровой обработки сигнала дало возможность записывать информацию на стандартную дискету, которую можно было прочитать на любом персональном компьютере. Пространственное разрешение достигало 256 на 256 элементов, а частота кадров была около 20 Гц. Казалось, что это предел для тепловизоров, который был достигнут с использованием одноэлементных приемников. Требовалось радикальное изменение схем построения приборов. Ближе к середине 90-х годов ХХ века такой революцией стало применение матричных технологий. Первые матрицы требовали охлаждения. В качестве такого холодильника была использована машина Стирлинга. Преимуществом было то, что охлаждение до температуры около минус 200 градусов Цельсия происходило в замкнутой системе. Недостатком было большое потребление энергии, недолговечность и длительный выход в рабочий режим после включения. Новый прибор был готов к работе через 5-10 минут. После нескольких лет эксплуатации данное время могло быть увеличено вдвое. Для стационарных систем это не имеет большого значения и практически все современные тепловизоры на матрицах с квантовыми приемниками излучения имеют охлаждение с помощью машины Стирлинга. Изначально такие тепловизоры имели чувствительность около 0,01 градуса Цельсия, размер матрицы 256 на 256 элементов, частоту кадров свыше 50 Гц и вес около 2 кг. В настоящий момент идет улучшение данных параметров и усовершенствование функциональности приборов. Что касается портативных тепловизоров на охлаждаемых матрицах, то их преимущества имели меньшую значимость, чем их недостатки. Более того спектральный диапазон был 3-5 мкм, а хотелось получить наиболее компактный инструмент, который бы работал в диапазоне 7-14 мкм. Так во второй половине 90-х годов ХХ века стали производить болометрические матрицы, которые функционировали в данном диапазоне и не требовали дополнительного охлаждения. Практически все современные портативные приборы основаны на этой технологии. Они имеют пространственное разрешение от 16 на 16 до 640 на 480 элементов, чувствительность около 0,1 градуса Цельсия, частоту кадров 50-60 Гц и вес от нескольких сот грамм до килограмма с небольшим. В связи с доступностью матричных технологий производство тепловизоров с начала ХХI все больше и больше смещается в Юго-Восточную Азию.


Применение пирометра LumaSense Impac IPE 140/45 в составе системы LumaSense FEGT для измерения температуры газа на выходе из топки

     Одной из основных задач при мониторинге параметров работы котельного агрегата является контроль температуры газа на выходе из топки. В случае если температура газа будет слишком высокой, остатки частиц золы оплавятся на трубах и навесных деталях, образуя шлак, что снижает эффективность теплообмена с экраном и приводит к увеличению числа операций по очистке отложений шлака и золы, а также коррозии труб и снижению устойчивости к нагрузкам. Все данные факторы служат причиной увеличения вероятности аварийной ситуации. В свою очередь, низкая температура газа может указывать на незавершенность процесса сгорания, приводящую к снижению производительности. Таким образом, контроль за температурой газа на выходе позволяет операторам регулировать и оптимизировать процесс горения, а также правильно эксплуатировать топку котла. Пирометр IPE 140/45 Компания LumaSense применила 50-ти летний опыт в сфере инфракрасной техники для создания комплексного решения, специально предназначенного для более эффективного и безопасного мониторинга газа на выходе из топки котла. Система FEGT В данной системе применяется пирометр Impac IPE 140/45 со специальным фильтром на 4,5мкм., необходимым для мониторинга температуры пламени и газообразных продуктов горения. Продукты сгорания ископаемого топлива содержат примерно 10% CO2. Инфракрасное излучение данных молекул измеряется при помощи пирометра Impac IPE 140/45 для получения точных данных о температуре горячего газа. Регулируемая оптика, установленная на пирометре Impac 140/45, позволяет сфокусироваться на зоне интереса и получить достоверные данные по температуре. Общий вид системы LumaSense FEGT Система LumaSense FEGT, в составе которой применяется данный пирометр, специально спроектирована для работы в тяжелых промышленных условиях и обеспечивает защиту пирометра Impac IPE 140/45. Герметичный защитный кожух с устройством “VORTEX” воздушного охлаждения и встроенным фильтром обеспечивают непрерывную эксплуатацию пирометра Impac IPE 140/45. Блок воздушной продувки обеспечивает минимально загрязнение съемного смотрового окна CaF2.Монтаж выполняется при помощи специального шарового фланца.


Отчет о прошедшей выставке Территория NDT

Компания Диагност приняла участие в выставке Территория NDT 2015. На нашем стенды было представлено оборудования для неразрушающего контроля, такое как дефектоскоп на фазированных решётках  Omniscan, дефектоскопы Epoch 600 и Epoch XT, ультразвуковой анализаторы дефектов SDT,который применяется для контроля запорных арматур, поиска утечек сжатого воздуха и проверки состояния подшипников, редукторов и т.д. Наши специалисты проводили демонстрацию оборудования на реальных объектах контроля. Если вы пропустили данное мероприятие вы можете связаться с нашими специалистами и договориться о демонстрации оборудования у нас в офисе или у вас на предприятии.


АКЦИЯ — Весна 2015. Приборы производства компании Chauvin Arnoux (Франция) по сниженным ценам

АКЦИЯ - Весна 2015 Приборы производства компании Chauvin Arnoux (Франция) по сниженным ценам Новые приборы


Новый модуль online мониторинга состояния изоляции обмоток статора электродвигателя MSIM для системы Bently Nevada 3500

C. David Whitefield, P.E. Главный инженер компании Bently Nevada dave.whitefield@ge.com На многих промышленных предприятиях используются средние и крупные электродвигатели переменного тока (рисунок 1) в качестве приводов для больших компрессоров, насосов, нагнетателей и вентиляторов. Большинство электродвигателей данного типа оснащены подшипниками скольжения. Техническое состояние таких электродвигателей контролируется при помощи систем мониторинга Bently Nevada 3500. РИС.1 Проблема Система 3500 является эффективным решением для вибромониторинга роторов электродвигателей и диагностики дефектов подшипников. Еще одна распространенная неисправность электродвигателей – это ухудшение состояния изоляции обмоток статора. Дефекты статора и подшипников (диагностируемые путем измерения уровня вибрации), составляют более 75 процентов всех дефектов электродвигателей. Необходимость диагностики дефектов статора электродвигателей очевидна; тем не менее, практически ни одна система online мониторинга не может использоваться для этого. Существующие на сегодняшний день технологии мониторинга состояния электродвигателей можно разделить на две категории – offline и online мониторинг. Offline мониторинг Эта технология мониторинга состояния применяется тогда, когда электродвигатель остановлен, охлажден и отключен от сети. Она предполагает использование портативной диагностической аппаратуры. В этом случае применяются следующие методы диагностики: Измерение электрической емкости и тангенса угла потерь (C & DF), проводится при температуре окружающей среды. Измерение сопротивления изоляции (IR) и степени поляризации (PI) при помощи мегаомметра, высоковольтное испытание постоянным и переменным током, измерение частичных разрядов (PD), коэффициента мощности или тангенса угла потерь и другие электрические испытания, необходимые для оценки состояния изоляции обмоток статора. Анализ частичных разрядов: данный метод диагностики отслеживает появление мельчайших электрических разрядов в микрополостях изоляции обмоток, которые возникают по мере ухудшения состояния изоляции. С этой целью используется как стационарная, так и портативная аппаратура. Помимо вышеупомянутых технологий мониторинга состояния электродвигателей, для более эффективной диагностики и оценки их состояния могут использоваться идругие методы диагностики. Продолжение следует...


Течеискатели. Мониторы опасных газов. Средства защиты предприятий и окружающей среды. Titan — первый в мире монитор бензола для нефтехимических предприятий. Новинка 2015 года.

Titan – первый в мире монитор бензола для нефтехимических предприятий Установите мониторы Titan (Титан) на вашем НПЗ и вы получите первый по-настоящему селективный монитор бензола на рынке. Он отреагирует на наличие бензола в среде других углеводородных соединений и измерит его концентрацию. Titan работает непрерывно, в реальном времени ведет мониторинг бензола и предназначен для контроля рабочей силы. Прибор монтируется на стену. Диапазон обнаружения бензола 0,1 - 20 ррм. Titan автоматически берет пробы газа из окружающей среды один раз в минуту и ​​в течение всего 60 секунд отображает точное измерение бензола на дисплее. Titan обеспечивает немедленное оповещение аварийно-предупредительной системы! Имеет настраевыемые оператором уровни чувствительности, обеспечивая персонал предприятия полной безопасностью. Его можно настроить в соответствии с вашими стандартами защиты. Прибор включает в себя два релейных выхода, позволяющие оператору установить необходимые уровни сигнализации. Непрерывные измерения в реальном времени Титана позволяют наблюдать изменения среды с течением времени и могут контролироваться и передаваться через 4-20 мА или RS485. Данные хранятся в системе и могут быть загружены удаленно для анализа. Разработан, чтобы легко устанавливаться и обслуживаться. Сервисный модуль может быть удален и заменен для, или после ремонта и обслуживания как картридж. Система автоматически его обнаруживает в режиме «plug and play». Titan от компании Ion Science имеют патентованные датчики MiniPID с доказанной устойчивостью к влажности и загрязнениям, обеспечивая оптимальную производительность в любой окружающей среде.


Датчик LaserSpeed компании Beta LaserMike помогает производителям улучшить качество продукции, повысить производительность труда и экономию средств

В датчиках LaserSpeed используются передовые лазерные технологии, для точного измерения длины и скорости горячей и холодной стали и цветных металлов бесконтактным способом. Лазерный датчик проецирует уникальный узор на поверхности продукции. Во время ее движения лазерный луч отражается обратно в блок LaserSpeed. Эта информация преобразуется в скорость продукции и импульсы, производимые для определения длины изделия. Измерения длины и скорости проводятся с точностью ±0,05% и погрешностью ±0.02%. В LaserSpeed не используются никакие движущиеся части и он калибруется на заводе-изготовителе. Это идеальная замена для контактных тахометров, у которых велика вероятность ошибок в измерениях, вызванных проскальзыванием, загрязнением поверхности, износа, и экстремальными условиями окружающей среды. LaserSpeed работает со всеми видами продукции, такими как прутки, шины, тубы, трубы, слябы, холодный/горячий прокат и профили. Beta LaserMike предлагает серию датчиков, включающую в себя : Датчики LS8000 серии - точное измерение длины и скорости на расстояниях от 300 мм до 2500 мм, и скоростях до 20 000 м/мин Датчики LS9000 серии - аналогичны по производительности LS8000, а так же позволяют учитывать движение в обратном направлении и нулевую скорость (остановку) В зависимости от применения, датчики LS8000 и LS9000 могут быть использованы самостоятельно или упакованы Е-, X - или C-исполнение корпуса. Кожухи Е- и X - позволяют применять датчики в жестких сухих или горячих влажных средах. Или установить внутри C-рамки рентгеновского датчика. Оба устройства оснащены блоком воздушной очистки/быстрозаменяемым окном и блоком воздушной продувки, обеспечивающие поддержание чистоты системы и очистку пути лазера для правильного измерения и максимально долгой безотказной работы. Также доступен ряд принадлежностей для решения конкретных эксплуатационных и производственных задач.  


Преимущества бесконтактных датчиков для измерения скорости и длины LaserSpeed компании Beta LaserMike в плане производительности и экономии

 Преобразователи бумаги, пленки, фольгированной продукции находят применение там, где необходим жесткий контроль длины и скорости продукции в процессе производства. Применение включает в себя непрерывное измерение длины, контроль дифференциальной скорости, контроль резки, позиционирование продукции, контроль нанесения печати и покраски, а также другие нужды. Большинство производителей зависят от точности их электропривода или механических контактных преобразователей. Но, механические преобразователи могут терять контакт на различных поверхностях продукта из-за проскальзывания или вибрации, и требуют частой калибровки из-за механического износа. Погрешность контактного преобразователя (около 2%) может конвертироваться в значительные денежные убытки из-за возврата продукции, отходов, технического обслуживания и времени простоя системы. Для решения этой проблемы, производители устанавливают бесконтактный датчик LaserSpeed компании Beta LaserMike на своих производственных линиях непосредственно для измерения длины и скорости продукции. В датчике LaserSpeed используются передовые лазерные технологии для точного измерения длины и скорости продукции в процессе производства без контакта с материалом. Лазерный датчик проецирует уникальный узор на поверхности продукции. Во время ее движения лазерный луч отражается обратно в блок LaserSpeed. Эта информация преобразуется в скорость продукции и импульсы, производимые для определения длины изделия. Измерения длины и скорости проводятся с точностью ±0,05% и погрешностью ±0.02%. Датчики LaserSpeed применяется для широкого спектра производственных и упаковочных процессов, вот некоторые из них - обеспечение точного измерения длины продукта и скорости резки/перемотки, регулирование покраски/ламинирования, контроль критически важных операций резки и мониторинг натяжения полотна. В результате более высокой точности измерений и более жесткого контроля процессов, датчики LaserSpeed предоставляют целый ряд преимуществ, повышающих прибыль и эффективность производства. В датчиках LaserSpeed компании Beta LaserMike доступны диапазоны измерения скорости от 0 м/мин до 20000 м/мин, расстояния до объекта контроля до 2500 мм, и глубина зоны измерения до 200 мм. Специальные модели LaserSpeed при измерении учитывают движение продукции в обратную сторону, а также нулевую скорость (остановку).


OOO Диагност | Адрес: 105187, г. Москва, Окружной проезд, д. 15, корпус 2 Телефон: 8 (495) 783-39-64 Электронная почта: diagnost@diagnost.ru
©1991-2015 OOO "Диагност". Продажа диагностических и измерительных приборов: тепловизоры, пирометры, дефектоскопы, толщиномеры, течеискатели, твердомеры, анализаторы металлов и сплавов, электроизмерительные приборы. Яндекс.Метрика